인류의 복지와 편익을 위한 인프라 건설을 주도하는토목공학과
제목
(2학년) 토목빅데이터마이닝(인공지능개발실습) 기말시험 중요 코딩(박영훈 교수)
작성일
2024.12.05
작성자
부천대학교 토목공학과
# 2번 install.packages("arules") tr.filter.uniq=unique(tr.filter) rules.target=subset(rules, rhs %in% "스포츠" & lift>1.5) #4번 install.packages("caret", dependencies = TRUE) install.packages("NeuralNetTools") predicted=as.factor(predict(nn_model, newdata=cb.test, type="class")) dim(cb.train); dim(cb.test) install.packages("C50") cb.test$c5_pred =predict(c5_model, cb.test, type="class") confusionMatrix(cb.test$c5_pred, cb.test$refund)
library(arules)
tr=read.delim("dataTransactions.tab", stringsAsFactors=FALSE, fileEncoding = "euc-kr")
head(tr, n=20)
tr.filter=subset(tr, subset=!(corner %in% c("일반식품","가구")))
head(tr.filter, n=20)
trans=as(split(tr.filter.uniq$corner, tr.filter.uniq$custid), "transactions")
rules=apriori(trans, parameter=list(support=0.2, confidence=0.8))
summary(rules)
inspect(sort(rules.target, by="confidence"))
# 3번
turkey=read.csv("turkey.csv")
head(turkey, n=20)
turkey=na.omit(turkey)
head(turkey, n=20)
install.packages("MASS")
library(MASS)
model1=lda(TYPE~HUM+RAD, data=turkey)
model1
predict(model1,data.frame("HUM"=c(150,150), "RAD"=c(135,150)))
model2=qda(TYPE~HUM+RAD, data=turkey)
model2
predict(model2,data.frame("HUM"=c(150,150), "RAD"=c(135,150)))
install.packages("nnet")
library(nnet)
cb=read.delim("Hshopping3.txt", stringsAsFactors = FALSE, fileEncoding = "euc-kr")
head(cb)
cb$sex=factor(cb$sex)
cb$corner=factor(cb$corner)
cb$refund=factor(cb$refund)
str(cb)
library(caret)
set.seed(1)
inTrain=createDataPartition(y=cb$refund, p=0.6, list=FALSE)
cb.train=cb[inTrain,]
cb.test=cb[-inTrain,]
set.seed(1234567)
nn_model=nnet(refund~age+money+corner, data=cb.train, size=7, maxit=1000)
library(NeuralNetTools)
garson(nn_model)
confusionMatrix(predicted,cb.test$refund)
# 5
set.seed(5)
inTrain=createDataPartition(y=cb$refund, p=0.6, list=FALSE)
cb.train=cb[inTrain,]
cb.test=cb[-inTrain,]
library(C50)
c5_options =C5.0Control(winnow = FALSE, noGlobalPruning= FALSE)
#winnow=TRUE : feature selection 적용(다중공선성, 중요도 등 고려 일부 변수 자동 제거)
c5_model =C5.0(refund~ age+money+corner, data=cb.train, control=c5_options, rules=FALSE)
summary(c5_model)
#plot(c5_model)
cb.test$c5_pred_prob =predict(c5_model, cb.test, type="prob")
head(cb.test)